• 如何培养学生的思维方式?

              如何培养学生的思维方式要培养学生的思维方式,我觉得思维方式一般来讲就是逻辑思维。而逻辑思维指的就是说做事情的一个先后顺序也就是统筹思维吧,什么事情最重要,最紧急先做。一般来讲,你要知道你现在是学生,那么最紧急最重要的事情就是学习,那学习要有方法,学习的方法是什么?就是对自己的学习要有一个规划。这才是学生的正确的思维方式。要以学习为主。然后在学习的时候要多去动脑筋思考自己的错漏。去思考自己错的地方在哪里,为什么会错,尤其是数学,物理化学这些。注重逻辑思维的学科也就是理科,这样子你才能够培养一个正确的思维方式,从逻辑思维下手。以点带面,去思考自己的错误的地方。然后把它纠正过来改正过来,慢慢的纠正自己的这些不良的,错误的思维。从最重要最紧急的地方入手,去改正自己的惰性。我觉得这才是培养学生正确的思维方式。

              如何培养数学思维方式

              如何培养数学 思维方式 ?思维能力是一切能力的核心,它是通过对事物的感知、表象进行分析、概括、归纳而获得事物本质的能力。下面是我为大家整理的关于如何培养数学思维方式,希望对您有所帮助。欢迎大家阅读参考学习!

              1如何拓展学生的数学思维

              训练学生的数学思维应有规律

              数学思维中的规律包括形式逻辑规律和辩证逻辑规律以及数学本身的特殊规律。它们之间又是相互联系的。存在着形式和内容、具体与抽象、特殊与一般的关系。要使学生学习富有成效,必须揭示知识的内在的联系与规律。如整数、小数、分数、百分数概念之间的联系;四则计算中的五大运算定律,是数系运算根据的通性公式;和、差、倍、分四种基本数量关系是各种应用题的基础等等。规律揭示得愈基本、愈概括,则学生的理解愈容易,愈方便,教学的效果也越好。

              因此,教师在新知识教学时,要充分利用迁移的功能,让学生用已有的知识和思维 方法 ,去解决新的问题。如我们在教了“5乘以几”的乘法口诀后,可以让学生用这种思考方法去推导其他乘法口诀;学了“加法交换律”的推导后,可以同样的方法学习乘法交换律;学了“三角形的面积公式”推导后,可以同样的方法学习梯形的面积公式推导等等。

              训练学生的数学思维应有系统

              散乱无序的思维是不能正确反映客观世界的整体性的。“所谓智力的发展不是别的,只是很好组织起来的知识体系”,要使数学知识在考虑数学知识本身的逻辑系统和学生认知规律的相互作用下,能上下、左右、前后各个方向整合成一个纵向不断分化,横向综合贯通,联系密切的知识网络,使数、形、式各部分知识纵横联系,相互促进,广中求深。实践证明,知识联系越紧密,智力背景就愈广阔,迁移能力也就越强,创造性思维就越有可能。

              一个多方向、多层次的整体结构,对知识的理解、掌握、储存、检索和应用愈有利。但由于小学身心发展的自身规律决定了教师在教学中不可能将知识一下子整体传授给学生,而是在教学时具有一定的等级层次性、阶段性,不同的层次、不同的阶段反映不同的思维水平和不同的思维品质。如小学数学中整数计算的四次循环,分数、小数的两次循环。而三角形知识的两次教学等。教师在教学时应从整体的、系统的观点出发,明确每一层次、每一阶段对学生 思维训练 的要求,恰到好处地进行训练。

              2数学思维训练

              要善于应用现代 教育 技术,培养学生的数学思维能力

              随着信息科学技术的迅速发展和普及,及大地提高并丰富了当今人类获取、传递、再生和利用信息的能力和手段,改变了人们生活、学习、工作方式。尤其在教学活动中的地位作用日趋重要。信息技术集文字、声音、动画、图形与图像于一体,能提供最佳的教学情境,对于提高学生学习数学的兴趣,激励学生积极主动地参与充满丰富、生动的学习活动,经历一个实践和创新的过程,培养学生的创造意识和创新能力具有不可替代的作用

              甚至对数学教育的价值、目标、内容以及学与教的方式的改革都有极大的促进作用。现代信息技术教学手段的运用是全面实施素质教育,全面提高教育教学质量的有效途径。利用现代信息技术来辅助教学是一种新型的行之有效的教学手段和方法,信息技术与数学教学的整合,是教育面向现代化,面向世界,面向未来的必然发展。

              训练扩展

              精心设计开放型题目,培养学生思维的多向性与广阔性。数学开放题是指那些条件不完备、结论不确定的数学问题。这种开放性问题极具挑战性,需要学生动脑思考,进行探究,能为学生开辟广阔的思维空间,具有很高的创造教育价值。 设计陷阱式题目,培养和发展学生的 反思 能力。新课改以后,教师在课堂教学中注重给予学生独立思考的时间和空间。

              当学生出现差错时,教师不要急于纠正,要给学生自己反省思考的时间,要知道学生的创造过程也是不断反思的过程。因此,教师设计的练习要有利于学生反思能力的培养与提高。 设计课后延展性练习,使学生思维在生活中延伸。人们学习数学的最终目的是运用数学解决生活和生产中的问题。小学生学习数学的目的是要在理解、掌握基础知识和基本技能的基础上,能运用所学的知识与技能,解决生活中简单的数学问题。单靠课堂教学不可能完成这个目标,必须把课堂学习延伸到课外。在学生探究过程中,引导学生捕捉生活现象,采集生活实例,使学生具有一双善于发现的眼睛,引导学生善于思考生活中的数学。

              3数学思维训练

              实践性教学培养数学思维能力

              在小学数学教学中让学生进行实践是有效提高课堂教学质量的一种重要手段。如教学了行程问题后,我出示了这样一题:“已知客车每小时行60千米,货车每小时行50千米。现在两车同时从相距200千米的甲、乙两地同时出发,经过2小时两车相距多少千米?”

              题中未说明行驶方向,所以两车出发2小时,两车相距的路程应是多少并无一个标准。于是,我组织两个学生在教室中分四种情况进行了演示:1.两个学生同时相向而行;2.两个同学同时相背而行;3.两个学生同时向同一方向而行,走得快的同学在前;4.两个学生同时向同一方向而行,走得慢的同学在前。我再启发学生,这道题应该如何进行解答。这样,学生很快 总结 出,这道题应分以下四种情况进行讨论:

              (1)两车同时相对而行,相遇后又拉开距离:(60+50)×2-200=20(千米)

              (2)两车同时相背而行:(60+50)×2+200=420(千米)

              (3)两车同向而行,客车在前面货车在后面:60×2+200-50×2=220(千米)

              (4)两车同向而行,货车在前面客车在后面:50×2+200-60×2=180(千米)

              教师在教学实践中动手操作或让学生自己动手操作,最能唤起学生的兴趣,保持学生稳定的注意力。如在推导圆柱体的体积公式时,通过让学生自己推导将一个圆柱体拼割成一个近似的长方体,并让学生掌握了圆柱体的体积公式后,可以出示这样一道题目:“将一个圆柱体拼割成一个近似的长方体后,这个近似的长方体的表面积比原来增加了40平方厘米,已知这个长方体的高为1分米,求这个圆柱体的体积是多少立方厘米?”学生由于刚刚自己动手推导圆柱体的体积公式,因此很快可以求出这个圆柱体的底面半径为:40÷2÷10=2(厘米),这个圆柱体的体积为:3.14×2×2×10=125.6(立方厘米)。

              多媒体教学培养数学思维能力

              多媒体作为常规教学的辅助手段,越来越受到小学数学教师的重视,这与它的积极作用是分不开的。幻灯、投影的特点之一就是具体形象、生动直观,能给学生提供鲜明、生动、明晰的视觉形象,激起学生学习的兴趣和求知欲,调动学生学习的积极性。

              如“量角器的认识和使用”一节,如照书本插图或模型教具讲解,可见度太低,会影响学生学习积极性。假如把透明量角器放在投影仪的载物台上,通过投影进行讲解,则能满足学生视觉直观需要,使学生聚精会神、兴趣盎然地投入到学习活动中。

              4数学思维训练

              改变学生学习方式

              打破学生认知上的思维定势,使学生产生认知冲突,培养学生思维的独立性。思维定势不仅影响对问题的解决,而且限制了学生的思维空间。因此,在解决问题的过程中,教师要鼓励学生用多种方法解决问题,引导学生从不同角度、不同思路去思考,并尝试评价不同方法之间的差异。对学生总结出的解题方法,教师要给予肯定,并引导学生在解决生活实际问题时有所运用。不拘泥于书本,学生思维的多向性就能得到训练。

              引导学生反思,让学生体验自己思维的全过程。反思是学生数学学习活动的重要内容之一,在数学学习过程中,要有意识地引导学生自觉地反思自己的思维活动。反思的内容有:解决问题的关键在哪里?运用了哪些基本的思考方法、技能?是否能找出其他更快捷的解题办法,有没有更好、更有趣的解题方式等。

              顺水推舟,延伸思维

              在课堂教学中,由于每个学生都是一个不同的个体,所以有许多学情是无法预设的。而这些预设之外的学情却可以成为教学中宝贵的隐性资源。如果顺着学生的思路,教师作适当地设疑点拨,往往也可以促使学生的思维走向深入。 例如,教学“认识平行”一课,在学生尝试画平行线的过程中教师发现,有学生利用了三角板的斜边画了一条直线,然后用直尺去靠三角板斜边左边一个顶点,发现有点不对,又不知问题出在哪(见图1)。这时教师及时捕捉:把这一画法放在实物投影上让学生们来观察这一画法有什么问题。学生说应该用三角板的一条直角边画直线,直尺紧靠另一直角边,而他没用直角边。

              这时,教师顺势引导学生思考,那么如果就用这条斜边画平行线,直尺只要怎么靠同样也能画出平行线来?直尺在画平行线的过程中主要起什么作用?学生的思维自然又深入一层,通过讨论与尝试实践,学生们高兴地发现只要将直尺斜过来靠在直角边上同样也能画出平行线,关键只要保证直尺紧靠三角板一边,保证三角板另一边能平移,就能正确画出平行线(见图2)。从而进一步理解了画平行线的方法和原理。 一个看似脱离预设正轨的细节,引发了更深层次的探索,在这样的教学中,学生不再怕出错,教师也不再怕学生超出预设,因为有了这些“出轨”,数学学习才更加充满魅力,思维空间才更高、更远。

              相关 文章 :

              1. 怎样训练提高数学的逻辑思维

              2. 如何培养数学思维

              3. 数学思维方法有哪些

              4. 怎样提高数学的逻辑思维?

              5. 数学教学中培养学生的思维能力浅见


              本文原地址:
              郑重声明内容均来自互联网,如果侵犯了你的权利,请联系我们删除!

              标签: 空中六楼情绪

                        • 上一篇:对礼仪部的看法和建议
                          下一篇:家长怎样帮助孩子学英语