我的研究方向就是大数据和人工智能,目前我也在带研发团队做相关的落地项目,所以我来回答一下这个问题。
大数据的研发围绕数据展开,涉及到数据的采集、整理、传输、存储、安全、分析、呈现和应用等内容,涉及到的岗位也非常多,这其中有的岗位有一定的难度,比如数据安全、分析等,有的岗位难度相对较小,比如数据整理、数据清洗等。
大数据的发展极大促进了人工智能的发展,因为数据是智能的基础,所以从这个角度来看,大数据的发展与人工智能的发展必然是互相促进的。我就是从大数据研发转向机器学习的,进而进入人工智能领域,这也是很多人进入人工智能领域的途径。
机器学习涉及到的核心步骤包括数据收集、算法设计、算法训练、算法验证和算法应用等,这其中数据是机器学习的基础,只有具备了足够的训练数据才能让机器学习顺利进行,而大数据的特点就是海量数据。
人工智能的研究主要涉及到六大部分,分别是自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学,可以说人工智能是典型的多学科交叉专业,涉及到的内容多且复杂,所以人工智能虽然经历了半个多世纪的发展,但是目前仍然处在初级阶段。目前随着大数据的发展,在很多特定场景下已经有大量的智能体(Agent)在实际应用,相信未来智能体的应用将更加普遍。
大数据和人工智能都不简单,都需要一个系统的学习过程和长期的实验,二者联系紧密,可以说你中有我、我中有你。从学习的角度出发,建议从大数据开始学起,这样会更加顺利一些。
我目前在带队做基于机器学习的智能诊疗项目,我会陆续在头条上写一些相关的科普文章,感兴趣的朋友可以关注我的头条号,相信一定会有所收获。
如果有大数据或者机器学习方面的问题,也可以咨询我。
谢谢!